Influence of preformed Asp23-Lys28 salt bridge on the conformational fluctuations of monomers and dimers of Abeta peptides with implications for rates of fibril formation.
نویسندگان
چکیده
Recent experiments have shown that the congener Abeta(1-40)[D23-K28], in which the side chains of charged residues Asp23 and Lys28 are linked by a lactam bridge, forms amyloid fibrils that are structurally similar to the wild type (WT) Abeta peptide, but at a rate that is nearly 1000 times faster. We used all atom molecular dynamics simulations in explicit water, and two force fields, of the WT dimer, a monomer with the lactam bridge (Abeta(10-35)-lactam[D23-K28]), and the monomer and dimers with harmonically constrained D23-K28 salt bridge (Abeta(10-35)[D23-K28]) to understand the origin of the enhanced fibril rate formation. The simulations show that the assembly competent fibril-like monomer (N*) structure, which is present among the conformations sampled by the isolated monomer, with strand conformations in the residues spanning the N and C termini and a bend involving residues D(23) VGSNKG(29), are populated to a much greater extent in Abeta(10-35)[D23-K28] and Abeta(10-35)-lactam[D23-K28] than in the WT, which has negligible probability of forming N*. The salt bridge in N* of Abeta(10-35)[D23-K28], whose topology is similar to that found in the fibril, is hydrated. The reduction in the free energy barrier to fibril formation in Abeta(10-35)[D23-K28] and in Abeta(10-35)-lactam[D23-K28], compared to the WT, arises largely due to entropic restriction which enables the bend formation. A decrease in the entropy of the unfolded state and the lesser penalty for conformational rearrangement including the formation of the salt bridge in Abeta peptides with D23-K28 constraint results in a reduction in the kinetic barrier in the Abeta(1-40)-lactam[D23-K28] congener compared to the WT. The decrease in the barrier, which is related to the free energy cost of forming a bend, is estimated to be in the range (4-7)k(B)T. Although a number of factors determine the growth of fibrils, the decrease in the free energy barrier, relative to the WT, to N* formation is a major factor in the rate enhancement in the fibril formation of Abeta(1-40)[D23-K28] congener. Qualitatively similar results were obtained using simulations of Abeta(9-40) peptides and various constructs related to the Abeta(10-35) systems that were probed using OPLS and CHARMM force fields. We hypothesize that mutations or other constraints that preferentially enhance the population of the N* species would speed up aggregation rates. Conversely, ligands that lock it in the fibril-like N* structure would prevent amyloid formation.
منابع مشابه
Dynamics of Asp23-Lys28 salt-bridge formation in Abeta10-35 monomers.
In the amyloid fibrils formed from long fragments of the amyloid beta-protein (Abeta-protein), the monomers are arranged in parallel and lie perpendicular to the fibril axis. The structure of the monomers satisfies the amyloid self-organization principle; namely, the low free energy state of the monomer maximizes the number of intra- and interpeptide contacts and salt bridges. The formation of ...
متن کاملEffect of the English familial disease mutation (H6R) on the monomers and dimers of Aβ40 and Aβ42.
The self-assembly of the amyloid beta (Aβ) peptides into senile plaques is the hallmark of Alzheimer's disease. Recent experiments have shown that the English familial disease mutation (H6R) speeds up the fibril formation process of alloforms Aβ40 and Aβ42 peptides altering their toxicity to cells. We used all-atom molecular dynamics simulations at microsecond time scales with the OPLS-AA force...
متن کاملMolecular dynamics simulations of Alzheimer's beta-amyloid protofilaments.
Filamentous amyloid aggregates are central to the pathology of Alzheimer's disease. We use all-atom molecular dynamics (MD) simulations with explicit solvent and multiple force fields to probe the structural stability and the conformational dynamics of several models of Alzheimer's beta-amyloid fibril structures, for both wild-type and mutated amino acid sequences. The structural models are bas...
متن کاملImpact of Cu(II) Binding on Structures and Dynamics of Aβ42 Monomer and Dimer: Molecular Dynamics Study.
The classical force field, which is compatible with the Amber force field 99SB, has been obtained for the interaction of Cu(II) with monomer and dimers of amyloid-β peptides using the coordination where Cu(II) is bound to His6, His13 (or His14), and Asp1 with distorted planar geometry. The newly developed force field and molecular dynamics simulation were employed to study the impact of Cu(II) ...
متن کاملMonomer adds to preformed structured oligomers of Abeta-peptides by a two-stage dock-lock mechanism.
Nonfibrillar soluble oligomers, which are intermediates in the transition from monomers to amyloid fibrils, may be the toxic species in Alzheimer's disease. To monitor the early events that direct assembly of amyloidogenic peptides we probe the dynamics of formation of (Abeta(16-22))(n) by adding a monomer to a preformed (Abeta(16-22))(n-1) (n = 4-6) oligomer in which the peptides are arranged ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 113 4 شماره
صفحات -
تاریخ انتشار 2009